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Abstract

Background: Phosphorylation of proteins plays a crucial role in the regulation and activation of
metabolic and signaling pathways and constitutes an important target for pharmaceutical
intervention. Central to the phosphorylation process is the recognition of specific target sites by
protein kinases followed by the covalent attachment of phosphate groups to the amino acids serine,
threonine, or tyrosine. The experimental identification as well as computational prediction of
phosphorylation sites (P-sites) has proved to be a challenging problem. Computational methods
have focused primarily on extracting predictive features from the local, one-dimensional sequence
information surrounding phosphorylation sites.

Results: We characterized the spatial context of phosphorylation sites and assessed its usability
for improved phosphorylation site predictions. We identified 750 non-redundant, experimentally
verified sites with three-dimensional (3D) structural information available in the protein data bank
(PDB) and grouped them according to their respective kinase family. We studied the spatial
distribution of amino acids around phosphorserines, phosphothreonines, and phosphotyrosines to
extract signature 3D-profiles. Characteristic spatial distributions of amino acid residue types
around phosphorylation sites were indeed discernable, especially when kinase-family-specific target
sites were analyzed. To test the added value of using spatial information for the computational
prediction of phosphorylation sites, Support Vector Machines were applied using both sequence as
well as structural information. When compared to sequence-only based prediction methods, a
small but consistent performance improvement was obtained when the prediction was informed by
3D-context information.

Conclusion: While local one-dimensional amino acid sequence information was observed to
harbor most of the discriminatory power, spatial context information was identified as relevant for
the recognition of kinases and their cognate target sites and can be used for an improved prediction
of phosphorylation sites. A web-based service (Phos3D) implementing the developed structure-
based P-site prediction method has been made available at http://phos3d.mpimp-golm.mpg.de.
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Background
Protein phosphorylation is a ubiquitously occurring
post-translational modification influencing many mole-
cular processes in all complex cells. The recognition of
phosphorylation sites by specific kinases and the
subsequent phosphorylation generally leads to an
alteration of the structure, function, or protein binding
properties of the target protein, which has evolved as a
mechanism to respond to environmental changes via
phosphorylation-triggered complex signaling networks
and cascades and is playing a crucial role in the
regulation of enzymes or transporters in metabolic
processes [1-4].

The study of phosphorylation events has been a central
research topic in molecular biology for many years. Given
the high number of candidate phosphorylation sites,
efforts to experimentally identify and verify them all
remain challenging. These difficulties motivated the
development of computational methods to predict
potential phosphorylation sites in silico. Most established
computational prediction methods rely solely on the
local sequence surrounding the target amino acid residue.
The developed prediction methods range from simple
amino acid sequence pattern recognition methods to
Markov Models, Neuronal Networks, and advanced
machine learning methods such as Support Vector
Machines [5-10]. Many of them have been made publicly
available and yield results with reasonable sensitivity and
specificity, but they generally suffer from either over- or
undercalling candidate sites as optimal parameters found
for one particular protein target class cannot be general-
ized to all phosphorylation motifs [9,11]. Recognizing
that the information content increases significantly when
the respective kinase families associated with their targets
are considered separately, approaches to predict phos-
phorylation sites in a kinase-family specific manner based
on family-specific local sequence motifs have also been
presented [5-8].

The acceptable performance of local-sequence-only
methods, together with reports that phosphorylation
sites appear to be preferentially located in unstructured
regions of proteins suggesting a limited relevance of any
structurally well-defined binding epitopes for the specific
recognition of kinases and their substrate proteins [10],
appear to justify focusing exclusively on local sequence
patterns rather than three-dimensional (3D)-structural
context information. However, the significantly
increased number of experimentally determined phos-
phorylation sites by proteomics technologies with
simultaneously available 3D structures of the associated
proteins in recent years and published analyses suggest-
ing that target sites may very well assume defined

structural conformations and, furthermore, that phos-
phorylation sites may be surrounded by specific
3D-structural environments [12,13] motivated us to
re-investigate the role of 3D-structural information for
the specific recognition of kinases and their substrate
proteins.

In a recently published systematic comparative and
structural analysis of protein phosphorylation, Jiménez
and co-workers [12] reported that serine and threonine
phosphorylation sites exhibit only a marginal tendency
to occur preferentially in structurally more flexible loops
with approximately 35% actually being located in a-
helices or b-strands, which can be assumed as relatively
rigid secondary structural elements. And for tyrosine
sites, no tendency to occur more frequently in loops was
detectable at all. Furthermore, they reported that a
substantial number of phosphorylation sites (15%) are
actually buried inside the protein and not exposed to the
solvent. An increased significance of 3D-structural
context for these locations is evident. Plewczynski and
co-workers reported that as many as 60% of phosphor-
ylation sites for the kinase families protein kinase A and
C (PKA, PKC) are located in a-helical regions [8]. Thus, a
significant number of phosphorylation sites are actually
located in structurally defined regions in which defined
structural surface features and motifs may turn out to be
relevant.

From studying sequence motifs associated with the
protein kinase A and G (PKA, PKG kinase families), the
consensus target sequence was determined as xRRxSx
[14,15]. However, of 273 target motifs for PKA in the
Phospho.ELM database [11], 5.5% do not contain any
arginine, and 1.5% neither arginine nor lysine in the
sequential neighborhood of six residues in both direc-
tions relative to the central serine. Of 32 targets for PKG
kinases, 9.3% of target sites do not contain any arginine,
and in 6% of the targets, both arginine and lysine is
absent. This observation implies that some recognition
features may perhaps be localized outside of the local
sequence, such that the positive-charge bearing amino
acids defining the required electrostatic potential surface
for binding may be contributed from sequentially
distant, but spatially close rather than sequence-local
sites.

In the light of these observations, it appears plausible
that, although the local amino acid sequence may
contain a significant portion of the information contents
with regard to phosphorylation, the actual local three-
dimensional environment may contribute appreciably to
the specificity of the kinase – target protein molecular
recognition event.

BMC Bioinformatics 2009, 10:117 http://www.biomedcentral.com/1471-2105/10/117

Page 2 of 17
(page number not for citation purposes)



Although there have been several approaches to use
structural information for improved prediction of
phosphorylation, they generally resulted in only modest
success rates [13,16]. These unsatisfactory results can
possibly be explained by an insufficient number of
annotated, experimentally determined structures as well
as by focusing on general structural properties such as
secondary structure, rather than trying to define 3D-
motifs based on spatial amino acid distributions.

Fan and Zhang characterized phosphorylation sites in
their spatial, protein-structural context using a simplified
"Altman" shell model with a radius of 16 Å and found
only minor differences of the amino acid composition
around phosphorylation sites compared to average
protein composition [13,17]. However, by analyzing
phosphorylation sites across all kinase families, any
motif that may be specific for particular kinase classes
may have been masked. The identification of kinase-
family-specific sequence motifs supports this view. These
amino acid preferences may also be detectable using a
protein structural approach which considers spatial
proximity rather than sequence proximity alone.

Plewczynski and co-workers applied molecular modeling
to characterize the local structural context of phosphor-
ylation sites [8]. In their approach, protein sequences
were compared to a library of short sequence and
structure motifs via a sequence matching algorithm,
adapted for local 3D-structure prediction. They achieved
significantly improved prediction accuracy of phosphor-
ylation events by means of similarity scores to a library
of PKA and PKC targets and conclude that "sequence
information ought to be supplemented with additional
structural context information... for more successful
predictions of phosphorylation sites in proteins."

The use of structural information for improved phos-
phorylation site prediction has also been explored by
Blom and co-workers, the authors of the popular
sequence-only-based NetPhos predication server [16].
In this approach, probabilities of contacts between Ca
atoms of residues within spatial neighborhoods of
phosphorylation sites and non-phosphorylation sites
were calculated, so called contact or distance maps. In a
second step, the probabilities of contacts of residues
from sequences are then calculated according to those
maps and used for prediction purposes. This led to
markedly improved sensitivity of the prediction of
phosphorylated tyrosine sites which the authors inter-
preted as an indication of the relevance of tertiary
structural information not reflected in the sequence
alone. However, this approach also led to an increase of
false positive sites and, as a consequence, to overall
worse prediction results.

The goal of this work was to characterize phosphoryla-
tion sites by spatial amino acid propensity distributions
to generate spatial signature motifs and the subsequent
assessment of this information to improve the prediction
of phosphorylation sites in proteins.

As previous studies have shown that "one-fits-all"
approaches; i.e., parameterization of the prediction
method irrespective of kinase-family, have led to only
modest success rates, we investigate here whether
considering kinase-family specific 3D-motifs may reveal
greater information contents and, thereby, yield
improved prediction results. Our method is based on
Support Vector Machines (SVM) [18,19]. SVMs have
been used in a wide range of problems in the area of
molecular biology including analyses of microarray data
[20-22], string matching [23,24], drug design [25],
protein fold recognition [26] and prediction of phos-
phorylation sites using sequence information [7,8,16].

We observed that 3D-motifs are indeed detectable,
especially when studying kinase families individually
and obtained improved prediction results by including
3D information in the prediction. We also implemented
a sequence-only approach that implicitly captures 3D
structural preferences associated with each of the
different amino acid types by using 530 amino acid
features which include also the generally accepted
phosphorylation site features such as hydrophobicity,
solvent accessibility as well as secondary and tertiary
structure preferences, polarity, volume and solvent
accessibility, structural disorder indices and others. This
predictor has recently been developed by our group as
part of a database of plant-specific phosphorylation sites.
The predictor was shown to accurately identify plant
phosphorylation sites and to outperform commonly
available predictors [27].

Results
To characterize the general structural properties of
phosphorylation sites (phos-sites) and to compare
them to unphosphorylated sites (non-phos sites), we
first analyzed secondary structural assignments, relative
side chain solvent accessibility, and the crystallographic
B-factor as a measure of local structural rigidity. A
statistically significant tendency for serine as well as
tyrosine phosphorylation sites to be more exposed to the
solvent was detected. Threonine sites were also more
exposed, albeit statistical significance could not be
established (Figure 1, Table 1). While these observations
follow the intuitive expectation that phophate-group
attachment sites should be more exposed, the magnitude
of the difference appears surprisingly low (Figure 1).
However, one has to bear in mind that serine, threonine,
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Figure 1
Comparison of general structural properties associated with phosphorylated (pos.) vs. non-phosphorylated
(neg.) residues. Serine: left column, threonine: middle column, tyrosine: right column. Annotations were taken from
PDBFINDER [47]. (a) Side chain accessibility to solvent relative to the large possible accessibility for serine. (b) Re-scaled
crystallographic B-factors describe the attenuation of x-ray scattering caused by thermal motion or quenched disorder and is
applicable measure for local structural rigidity. B-Factors from PDB-structures in the range of [10,40] are mapped to the range
[09] by PDBFINDER; 0 signifying rigid structures, 9 – indicating unresolved, rather flexible structural regions. (c) DSSP
secondary structure association. B = residue in isolated beta-bridge; C = Loop, irregular stretches; E = extended strand,
participates in beta ladder; G = 3-helix (3/10 helix); H = alpha helix; S = bend; T = hydrogen bonded turn.
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and tyrosine – polar amino acids themselves – have an
innate tendency to be exposed to water. The distribu-
tions of crystallographic B-factors of phos-sites in
comparison to non-phos sites were also observed to
differ (Figure 1). Phos-sites were more often found
associated with the largest B-Factor (Bin 9), i.e. regions
of greater structural flexibility, albeit significant p-values
of differences were only observed for serine sites
(Table 1). Phosphorylated serines and threonines are
more frequently found in random coil regions and less
in a-helical or b-strand regions than their unpho-
sphorylated counter-parts (Figure 1). For tyrosine, no
such preferences for secondary structural type were
detectable, except for a marginally increased frequency
of phosphorylated sites to occur more often in turns.

Characterization of the spatial environment of
phosphorylation sites
We determined the propensities for the different amino
acid residue types to occur in the spatial vicinity of the
phosphorylated serines, threonines, and tyrosines, both
for the sequential neighborhood as well as for the
spatial-environment. By separating the two, our goal was
to identify possible 3D-signature motifs. In a third
analysis, both contributions were combined to assess the
relative contribution of the sequence and structural
environment. As explained in the Method section, across
all phosphorylation sites, we calculated the propensity
values as log-odds ratios of the relative occurrences of
amino acid types within distances from 2 to 10 Å from
central phosphorylated amino acid residue and display
the results in radial-radial cumulative propensity plots
(RCP-plots) in which red-colored segments signify
statistically significant enrichment relative to a reference
set, and blue-colorings depletion.

When all serine, threonine, and tyrosine phosphoryla-
tion sites irrespective of their association with a

particular kinase family were analyzed, both the
sequence logos and the spatial profile of phosphorylated
serines showed only very little information contents
(Figure 2). Only small differences relative to the
reference set of un-phosphorylated sites were detectable
as reflected by the only few colored segments in the RCP-
plots indicating enrichment or depletion. For all three
target amino acid types, most information appears to be
contained in the local sequence and not in the spatial
environment. By considering amino acids irrespective of
their sequential proximity ("combined" graph), essen-
tially no significant differences to the reference set of un-
phosphorylated sites were found. This agrees well with
results reported by Fan and Zhang who characterized
structural microenvironments of phosphorylation sites
within 16 Å from the central residue only and observed
no evidence for significant amino acid propensities to
fall within radial distance of 16 Å [13]. Interestingly, in
the local sequence neighborhood, tyrosine residues – an
amino acid that itself is target of phosphorylation events
– appear to be depleted relative to the reference dataset
in serine- and threonine-targeted phosphorylation sites.
However, this depletion appears to be compensated by
tyrosine residues found in the spatial environment such
that overall ("combined" graph), no significant deple-
tion of tyrosine residues in the environment of serine-
and threonine phosphorylation sites was detectable.

Kinase-family specific phosphorylation motifs
For the set of serine protein kinase sequences whose
target proteins were found by screening the protein
structure databank (PDB); i.e., the structure of the target
proteins is known, we constructed a phylogenetic tree
and computed the corresponding sequence logos of the
targets associated with kinase group (Figure 3) [28] to
obtain an overview and reference framework of the
evolutionary relationships of the kinase sequences and
their respective targets. For tyrosine and threonine

Table 1: Structural features of phosphorylation sites

Property mean-Values
Positive set

mean-Values
Negative set

p-Values
t-Test

p-Values
Mann-Whitney

Serine-sites
Accessibility 4.25 3.70 1.32 E-03 1.93 E-03

B-Factor 5.65 4.93 7.40 E-04 2.79 E-04
Threonine-sites

Accessibility 3.92 3.57 1.49 E-1 2.07 E-01
B-Factor 5.30 4.76 1.11 E-1 8.26 E-02

Tyrosine-sites
Accessibility 2.98 2.36 7.33 E-07 2.52E-06

B-Factor 5.56 5.15 6.96 E-02 2.68E-02

Statistics for significance of the observed differences of solvent accessibility and crystallographic B-factor of phosphorylated (pos) vs. non-
phosphorylated (neg) for serine, threonine and tyrosine sites.
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kinases, respectively, such analysis was not possible
(with the exception of the PTK group of tyrosine specific
kinases) because of lack of annotated kinase-target pairs
with known structure. (Note: A comprehensive phyloge-
netic analyses of kinases can be found in [29,30]. Here,
we focused on kinase-target pairs with determined
protein structures of the target protein.) In agreement
with results from previous studies, the sequence logos of
serine kinase targets associated with the main serine-
kinase families can be clustered into several groups
[9,16,31,32]. Evolutionarily close kinase-groups tend to
also share common features in their respective targets.
The major groups of targets are characterized by proline
residues next to the central serine (CMGC kinase group

except CK II) or a glutamate (ATM), a second group with
negatively charged sequences (CMGC IV: CK II). The
AGC kinase-group as well as the CaMK kinase-group
comprise kinases with positively charged targets.

These enrichments are well captured by the sequence
logos and are also reflected in the RCP-plots for the
spatial environment considering sequence-local residues.
In addition to the detected enrichments (red-colored
segments), the RCP-plots also highlight significant
depletions of amino acid types (blue segments, Figure 2)
that are not immediately apparent from the sequence logo
plots alone.

In the following section, we investigate the targets
associated with the main kinase families in greater
detail. In particular, we are interested to uncover
potential 3D-signature motifs beyond the established

Figure 3
Phylogenetic tree of serine-kinase groups. Phylogenetic
tree of serine-kinase groups whose targets can be found in
the protein structure database (PDB) according to the
original Hanks and Hunter classification scheme [45] and
associated sequence logos [28]. Kinases with high similarity
tend to share similar targets. The major classes of kinase
targets are characterized by a proline and glutamate next to
the central serine, CMGC group I, II, II and respectively
ATM, a group with preferentially negatively charged amino
acid residues, CMGC IV and AGC IV, and a large group of
targets with an arginine and lysine at the second or third
position relative to the central serine, CaMK-Group and
AGC-Group except the AGC IV sub family. For kinase
families PKA, PKC, as well as CKII and MAPK most targets
with resolved structure were available and were used for
kinase family-specific predictors in this study.

Figure 2
Sequence logos and radial cumulative propensity
plots (RCP-plots). Sequence logos and radial cumulative
propensity plots (RCP-plots) illustrating enrichment as well
as depletion of particular amino acid types in the local
sequence (sequence logo), sequence-local spatial
environment including the 6 flanking amino acid residues on
either side of the central serine/threonine/tyrosine, (left
RCP-plot), spatially-local, but non-sequence local; i.e.,
excluding residues in the flanking sequence (middle plot), and
combined information (right-most RCP-plot). For every
amino acid type, the two different sub-sectors correspond to
the statistics obtained by using the closest detected atom and
the interaction center, respectively, and in clockwise order.
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sequence motifs that can be revealed when investigating
individual kinase families rather than across all sites.
Such motifs would become evident as colored segments
found in the "non-sequence-local" graph, but not found
in the "sequence-local" graph. We will refer to those
motifs as 3D-signature motifs. Naturally, we limited our
analyses to kinase families with sufficient numbers of
representatives with the smallest family being the MAPK
family with 12 members.

Serine Sites
The AGC group
The AGC family consists of kinases recognizing serine
targets with an arginine or lysine residue at a distance of 2–3
residues relative to the central serine within the local protein
sequence and includes the PKA and PKC as well as GRK,
BARK, MARK, PKB, PKG, and RSK kinase families which are
not included in the study of spatialmotifs presented here for
paucity of corresponding data. Furthermore, the local
sequence-based spatial profile is characterized by lower
than expected occurrences of tryptophan and glutamate.
Interestingly, the elevated occurrences of the positively
charged amino acids arginine and lysine – the hallmark for
the AGC kinase group – appears confined to the sequence-
local neighborhood. An enrichment of arginine or lysine in
the spatial context of PKA was not detectable. In the
structural neighborhood ("non-sequence-local" graphs),
the counts for both amino acids are not increased relative
to the reference distribution. The PKC motifs exhibit an
additional enrichment of serine in the sequence-local
neighborhood, accompanied by a pronounced depletion
of the amino acid residues histidine, glutamate, and
tryptophan. The PKA motifs were observed to be depleted
of the amino acid cysteine. For both families, PKA and PKC,
a depletion of the hydrophobic amino acids alanine and
leucine in the non-sequence-local neighborhood and an
additional depletion of isoleucine in PKA motifs was
detected (Figure 4).

The CMGC group
Proline residues flanking the phosphorylated serines are
the hallmark sequence feature of targets associated with
CMGC kinase group which includes the CDK, CKII
kinase families (Figure 3) as well as MAPK and CDC. The
CKII and MAPK were included in the spatial study as the
number of structurally annotated targets was sufficient.
The CKII family from the CMGC IV group, even though
grouped into the CMGC group, does not follow the Pro-
next-to-Ser rule. Its location in the serine-kinase phylo-
genetic tree is near the branching point between the
CMGC branch and ATM family (Figure 3).

In the sequence-local environment of the MAPK, no
enrichments of amino acids besides proline were

Figure 4
Sequence logos and radial cumulative propensity plots
(RCP-plots) of kinase-specific sequence motifs. Sequence
logos and radial cumulative propensity plots (RCP-plots) of kinase
specific sequence motifs, illustrating enrichment as well as
depletion of particular amino acid types in the local sequence
(sequence logo), sequence-local spatial environment including the
6 flanking amino acid residues on either side of the central serine/
threonine/tyrosine, (left RCP-plot), spatially-local, but non-
sequence local; i.e., excluding residues in the flanking sequence
(middle plot), and combined information (right RCP-plot). For
every amino acid type, the two different sub-sectors correspond
to the statistics obtained by using the closest detected atom and
the interaction center, respectively, and in clockwise order.
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detectable. Instead, depletions of eight amino acid types,
glutamine, asparagine, phenylalanine, isoleucine, valine
as well as glycine, serine, and threonine were detected. In
the non-sequence-local environment of target serines,
serine, and histidine residues were observed to be
overrepresented.

The active sites of CKII kinases are characterized by
positively charged surfaces [33]. This positive charge
density is mirrored by negatively charged aspartate and
glutamate in the sequence-local and non-sequence-local
spatial neighborhood. Furthermore, the RCP-plots reveal
enrichments of serine and histidine the sequence-local
and proline in the non-sequence-local RCP pattern. A
depletion of phenylalanine is observed at distances of 7
Å and greater for both patterns, while a depletion of
threonine, asparagine and isoleucine is only detectable
in the sequence-local spatial context.

Tyrosine sites
The PTK group
The PTK group comprises tyrosine phosphorylating
kinases and as such were not included in the introduced
phylogenetic tree of serine targeting kinases. The
sequence-local spatial context of SRC-kinase family
(PTK I) – for which sufficient data for analysis was
available – is enriched in aspartate, proline, leucine,
alanine, and tryptophan in the non-sequence-local
spatial context. Depletions of several amino acids were
also detectable, most consistently cysteine (Figure 4).

In summary, all kinase-family specific RCP-plots reveal
specific spatial profiles and more information contents

than was detectable when sites were investigated across
all kinase families (Figure 4). The profiles comprise
signatures of sequential motifs and discern spatial
preferences which cannot be identified by inspecting
the local sequence alone. All profiles show significant
patterns of enrichments as well as depletions of
particular amino acid residue types within the spatial
neighborhood of the phosphorylated target amino acid.

Computational prediction of phosphorylation events
using 3D-information
We now turn to investigating whether incorporating 3D
structural information can be used to improve the
sensitivity and specificity of phosphorylation site pre-
dictions in proteins.

Comparative analysis of prediction performance,
Kinase-family-specific predictions
For the general, kinase-family unspecific prediction of
phosphorylated serine, threonine, and tyrosine sites, the
SVM-predictors based on local sequence information
alone that have been developed as part of this study were
observed to perform at comparable or even slightly
better performance levels compared to NetPhos and
DisPhos, and consistently better compared to Kinase-
Phos as judged by the area under the receiver operating
characteristic (AUC) from 10-fold cross-validation test
(Table 2).

Similarly, for the kinase-family specific predictions, the
AUC-based performance of NetPhos and our SVM-based
method was comparable or even in favor of our SVM
(Table 2) giving us an appropriate best possible

Table 2: Prediction performance as measured by the AUC

Kinase family Kinase group N Sequence-only Spatial-information
enriched

NetPhos 3.1b DisPhos 1.3 KinasePhos 2.0*

Ser kinases / 363 0.74 ± 0.02 0.79 ± 0.02 0.69 ± 0.02 0.73 ± 0.05 0.63 ± 0.05
PKA AGC I 34 0.91 ± 0.04 0.94 ± 0.04 0.91 ± 0.03
PKC AGC II 31 0.83 ± 0.05 0.87 ± 0.04 0.78 ± 0.05
MAPK CMGC II 12 0.89 ± 0.07 0.91 ± 0.06 0.78 ± 0.09
CKII CMGC IV 19 0.73 ± 0.07 0.78 ± 0.07 0.76 ± 0.07

Thr kinases / 134 0.72 ± 0.03 0.74 ± 0.03 0.66 ± 0.03 0.72 ± 0.06 0.66 ± 0.05

Tyr kinases / 253 0.69 ± 0.02 0.71 ± 0.02 0.65 ± 0.02 0.56 ± 0.06 0.54 ± 0.05
SRC PTK I 24 0.72 ± 0.07 0.79 ± 0.06 0.62 ± 0.07

unspecific predictor 750 0.71 ± 0.01 0.75 ± 0.01 0.67 ± 0.01 0.68 ± 0.03 0.63 ± 0.03

Results from the cross-validation of the various prediction approaches. The sequence-only and Spatial-information enriched methods were developed
as part of this study and compared to NetPhos 3.1b that includes the kinase-specific predictor NetPhos/K, DisPhos1.3 and KinasePhos2.0. As
KinasePhos reports only decision values of positively predicted sites, the evaluation of kinase specific prediction was not possible due to missing score
values for sites not predicted to be phosphorylated. However, the kinase-specific predictions were feasible as KinasePhos essentially reports all
submitted sites as being phosphorylated by at least one kinase. For the evaluation of the predictor, the highest reported decision value was used for
each site. Best performing methods are printed in bold-face.
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sequence-information-alone baseline to assess the effect
of adding 3D-structural information on the prediction
accuracy when added to the SVM.

While the magnitude of performance gain when includ-
ing 3D-profile information was relatively small com-
pared to the estimated standard error, for all target sites
and across all kinase-families and target residue types, a
consistent increase in performance was obtained suggest-
ing that including three-dimensional structural informa-
tion does indeed improve the sensitivity and specificity
of phosphorylation site prediction.

Similar conclusions can be drawn from comparing
prediction accuracies as well as sensitivities and
specificities associated with the predictions rather than
AUCs (Table 3) alone. Unlike in the case of AUC,

where it was impossible to compute AUC values for the
KinasePhos 2.0 prediction program because of non-
returned score values, here it was possible to obtain
relevant values also for the KinasePhos 2.0 prediction
program. Again, adding 3D-information to using only
sequence information resulted in modest (up to 5
percentage points), yet consistently improved predic-
tions for all three target amino acid types as well as
kinase-family specific targets such that best prediction
results were always obtained by using our 3D-informa-
tion enriched SVM-based prediction method with the
exception of the kinase families PKC and MAPK for
which the performance was virtually identical compared
to our sequence-only SVM, but still better than the
other prediction programs included in this study. The
most significant gain was obtained for serines sites
followed by tyrosine and threonine sites.

Table 3: Prediction Performance as measured by accuracy, sensitivity (sn), and specificity (sp)

Kinase family Kinase group N Sequence-only Spatial- information
enriched

NetPhos 3.1b Disphos 1.3 KinasePhos 2.0

Ser kinases / 363 0.69 ± 0.01
sn:0.76 ± 0.02
sp:0.62 ± 0.03

0.73 ± 0.01
sn:0.73 ± 0.01
sp:0.73 ± 0.02

0.64 ± 0.01
sn:0.70 ± 0.00
sp:0.58 ± 0.01

0.68 ± 0.01
sn:0.47 ± 0.00
sp:0.88 ± 0.03

0.50 ± 0.00
sn:1.00 ± 0.00
sp:0.50 ± 0.00

PKA AGC I 34 0.83 ± 0.03
sn:0.93 ± 0.05
sp:0.83 ± 0.07

0.88 ± 0.02
sn:0.86 ± 0.05
sp:0.80 ± 0.07

0.82 ± 0.02
sn:0.82 ± 0.00
sp:0.81 ± 0.05

0.71 ± 0.03
sn:0.65 ± 0.00
sp:0.75 ± 0.04

PKC AGC II 31 0.82 ± 0.02
sn:0.76 ± 0.03
sp:0.87 ± 0.03

0.82 ± 0.02
sn:0.80 ± 0.03
sp:0.81 ± 0.04

0.72 ± 0.02
sn:0.58 ± 0.00
sp:0.86 ± 0.04

0.64 ± 0.03
sn:0.61 ± 0.00
sp:0.66 ± 0.04

MAPK CMGC II 12 0.89 ± 0.04
sn:1.00 ± 0.00
sp:0.79 ± 0.08

0.89 ± 0.04
sn:0.88 ± 0.15
sp:0.79 ± 0.08

0.69 ± 0.02
sn:0.42 ± 0.00
sp:0.96 ± 0.04

0.61 ± 0.05
sn:0.50 ± 0.00
sp:0.64 ± 0.08

CKII CMGC IV 19 0.70 ± 0.03
sn:0.79 ± 0.18
sp:0.60 ± 0.18

0.74 ± 0.04
sn:0.88 ± 0.15
sp:0.61 ± 0.14

0.74 ± 0.02
sn:0.53 ± 0.00
sp:0.94 ± 0.04

0.62 ± 0.03
sn:0.47 ± 0.00
sp:0.67 ± 0.07

Thr kinases / 134 0.68 ± 0.01
sn:0.55 ± 0.04
sp:0.87 ± 0.04

0.69 ± 0.01
sn:0.61 ± 0.04
sp:0.80 ± 0.04

0.63 ± 0.01
sn:0.49 ± 0.00
sp:0.77 ± 0.02

0.66 ± 0.03
sn:0.49 ± 0.00
sp:0.83 ± 0.05

0.50 ± 0.00
sn:1.00 ± 0.00
sp:0.50 ± 0.00

Tyr kinases / 253 0.65 ± 0.01
sn:0.67 ± 0.06
sp:0.63 ± 0.06

0.67 ± 0.01
sn:0.51 ± 0.03
sp:0.81 ± 0.03

0.62 ± 0.01
sn:0.54 ± 0.00
sp:0.71 ± 0.01

0.53 ± 0.02
sn:0.29 ± 0.01
sp:0.77 ± 0.05

0.50 ± 0.00
sn:1.00 ± 0.00
sp:0.50 ± 0.00

SRC PTK I 24 0.70 ± 0.03
sn:0.74 ± 0.15
sp:0.66 ± 0.16

0.75 ± 0.03
sn:0.77 ± 0.09
sp:0.72 ± 0.10

0.57 ± 0.01
sn:0.17 ± 0.00
sp:0.98 ± 0.10

0.70 ± 0.04
sn:0.83 ± 0.00
sp:0.66 ± 0.04

unspecific
predictor

750 0.66 ± 0.01
sn:0.65 ± 0.01
sp:0.69 ± 0.02

0.69 ± 0.01
sn:0.60 ± 0.03
sp:0.78 ± 0.03

0.63 ± 0.01
sn:0.61 ± 0.01
sp:0.66 ± 0.01

0.62 ± 0.01
sn:0.42 ± 0.01
sp:0.83 ± 0.03

0.50 ± 0.00
sn:1.00 ± 0.00
sp:0.50 ± 0.00

Results from the cross-validation of the various prediction approaches. The sequence-only and Spatial-information enriched methods were
developed as part of this study and compared to to NetPhos 3.1b that includes the kinase-specific predictor NetPhos/K, Disphos1.3 and
KinasePhos2.0. The size of the negative set was adjusted to the size of the positive sites, ensuring equal sizes of the sets and a comparison
to original reports of accuracies of alternative prediction approaches. In the case of the kinase unspecific prediction of KinasePhos2.0,
all sites were predicted to be phosphorylated by at least one kinase. Best performing methods are printed in bold-face. Sn denotes
sensitivity, while sp denotes the specificity for the stated accuracy.
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Discussion
In this work, we focused on the characterization and
prediction of phosphorylation sites. Serine is the most
frequent target amino acid residue type for phosphoryla-
tion followed by threonine and tyrosine. We pursued
two major themes: the analysis phosphorylation in a
kinase family specific fashion, and to investigate whether
phosphorylation sites are characterized by specific three-
dimensional (3D) structural motifs or epitopes consti-
tuted by amino acid residues that are not necessarily
close in sequence, thereby providing additional informa-
tion that can help in predicting phosphorylation sites for
proteins with known structure or with available struc-
tural models. We used the simple radial distance to
define structural motifs. Ideally, angular information
would be included as well. However, much larger
datasets of determined structures would be necessary to
derive reliable statistical data for more refined
approaches. Even by applying only this simple model,
we observed that 3D-structural context information is
indeed discernable, even though the most information
contents appears to reside primarily in the local
sequence, as judged by the sequence-local kinase
unspecific RCP-plots and the modest increased perfor-
mance when adding spatial-information to sequence-
only based predictors. The most pronounced improve-
ment of prediction of phosphorylation sites by augment-
ing sequence-only prediction by spatial information was
obtained for targets of serine kinases. However, also for
the prediction of threonine and tyrosine targets, a
performance gain was obtained when adding 3D
information.

As several experimental techniques have been estab-
lished to detect proteins that specifically bind to
phosphorylated sites based on immobilized peptides
(pull-down assays and peptide chips [34-36]); i.e., the
binding epitope is reconstituted from the sequence-local
amino acid residues alone, the results obtained in this
study lend further support to such approaches. Based on
the findings obtained for our dataset, spatial informa-
tion is discernable, but may not be absolutely critical to
define the binding epitope, although conclusively prov-
ing it will require experimental comparisons of binding
efficiencies for known interacting partners based on the
complete and natively folded as well as local peptide
sequence.

It has been reported that phosphorylation is preferen-
tially occurring in unstructured; i.e., flexible regions of
proteins [10]. These conclusions resulted from sequence-
based predictions of the flexibility of phosphorylated
and non-phosphorylated sites and are also supported by
the reasonable prediction performance by DisPhos1.3
for serine and threonine. The predict ion of

phosphorylation sites by DisPhos is based on a prior
predication of local flexibility. However, many phos-
phorylation sites were found in regions of clearly defined
secondary structures (Figure 1). We further investigated
this by comparing the crystallographic B-factor as well as
secondary structural class for phosphorylated and
unphosphorylated serine sites (Figure 1). In the latter,
loop regions may represent rather unstructured seg-
ments, even though it does not mean that this regions
are structurally flexible. Flexibility may be better
captured by the reported B-factor. We found statistically
significant differences of B-factors for phosphorylated
compared to non-phosphorylated serine sites detectable,
albeit the differences were not that large. Of course, we
only included those proteins in our investigation with an
available crystallographic structure; including atomic
coordinate information for the targeted peptide segment
itself. It may be possible that, by only using fully
resolved structures that we needed in order to detect
possible 3D-motifs, we excluded phosphorylation events
in unstructured regions right from the start. Indeed, 86%
of removed motifs (Ser: 88%; Thr: 93%; Tyr: 75%) were
localized in loops as judged by prediction by DisEmbl
1.5 [37]. Within the training dataset only 66% of phos-
sites (Ser: 68%; Thr: 72%; Tyr: 60%) and 53% of non-
phos sites (Ser: 55%; Thr: 53%; Tyr: 51%) were predicted
in loops (Table 4). Moreover, 3% of phosphorylated
residues were found near the protein sequence termini
where the structural flexibility naturally increases, which
were not considered as potential target sites. Follow-up
studies need to be performed to address this question
more systematically by mapping sites that were found in
peptide-based methods (mass spectroscopy) and to map
them to available protein structures and to gather
statistics how often phosphorylation sites map to regions
that cannot be resolved crystallographically.

Gnad and co-workers, the authors of the PHOSIDA
database, evaluated the preferences of secondary struc-
ture, accessibility of phosphorylated residues and the
conservation rate of phosphorylation sites [38]. The
preferences of secondary structure and accessibility were

Table 4: Predicted ratios of sites in loop regions

Property removed
phos sites

training set
phos sites

training set
non-phos

All 86% 66% (53%) 53% (45%)
Ser 88% 68% (57%) 55% (54%)
Thr 93% 72% (64%) 53% (47%)
Tyr 75% 60% (41%) 51% (34%)

Predicted ratios of sites in loop regions as judged by prediction by
DisEmbl 1.5 [37]. Percent of sites in loop regions according to the
annotation of secondary structure of B, C, S, and T by DSSP is given in
brackets.
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estimated by prediction. Consistent with our results, they
found small, yet statistically significant differences
between the phos-site and non-phosite for serine,
threonine, and tyrosine motifs. Furthermore, they were
able to improve the performance of prediction by
applying the predicted values to prediction. Although
the average predicted accessibility differed from our
results, the tendencies were comparable. The computed
average accessibilities in the PHOSIDA-approach were
3.7 and 3.4 for phos and non-phos serines, 3.5/3 for
threonines and 2.2/1.7 for tyrosines, respectively. In our
approach the accessibilities and the secondary structure
preferences were determined based on fully resolved
protein structures. For PDBFINDER-based accessibility
values, we determined 4.28/3.62 for serines, 3.88/3.52
for threonines and 2.96/2.27 for tyrosines, respectively.
Furthermore, Gnad et al. predicted 93% of phosphory-
lated serines and 78% of non-phosphorylated serines to
occur in loops and hinge regions. For threonines, the
corresponding frequencies were determined as 90% and
70%, and for tyrosine 79% and 48%, respectively. In our
approach, we found significant differences of secondary
structural preferences between phos and non phos-sites.
In addition, the determined frequencies of sites in rigid
regions (non-loop regions) were much higher. However,
including accessibility and the secondary structure
information did not yield any improvements of the
prediction, probably because both these properties were
implicitly covered by the amino acid properties already.

A major problem in any effort to develop a computa-
tional predictor arises from the difficulty to define a
reliable true-negative set; i.e., sites that are truly unpho-
sphorylated. As phosphorylation is condition-depen-
dent, experimental screens may well be incomplete as
it is impossible to explore all environmental conditions
under which phosphorylation events may occur. Even
sites that are buried and inaccessible for phosphorylating
kinases in one protein state may become exposed upon
conformational changes and become phosphorylated
[12,39]. Thus, even buried sites cannot be ruled out as
candidate phosphorylation sites. Even more so, the
numerical value for solvent accessibility may oftentimes
suggest that a serine is buried, even though it is actually a
surface residue, but occluded by neighboring side chains
and not buried deep in the protein's core. The assump-
tion that buried amino acids cannot become phosphory-
lated and using it as criterion for the construction of a
negative set may, in fact, be misleading. The resulting
predictors will tend to predict accessibility of target sites
rather than the possibility of phosphorylation. An
alternative way for defining negative sets is including
of all candidate sites (serine, tyrosine, or threonine
residues) except experimentally verified phosphorylation
sites with the reasoning that such a true-negative set will

at least be depleted in true-positive sites. In this study,
we followed this approach, realizing that this may
represent a source of error.

An estimated two to five percent of eukaryotic genomes
codes for kinase genes grouped into different kinase
families [29,30] and 30% of all proteins are estimated to
be phosphorylated as judged by proteomics screens
[15,40]. Mirroring the many different kinases catalyzing
the addition of phosphate group to proteins, the high
diversity of their cognate phosphorylation target sites is a
major obstacle for a reliable prediction of phosphoryla-
tion. In addition, experimental evidence suggests that the
kinases are to some degree unspecific and are capable of
phosphorylating a wide spectrum of substrates [15]. On
the other hand, evidence for sequence-encoded specificity
on the side of phosphorylation target has also been
presented. For example, the prediction accuracy of
phosphorylation sites in plant proteins was shown to
increase substantially when the computational methods
were trained on plant proteins versus methods trained
primarily on animal proteins suggesting kingdom specific
differences of phosphorylation target sites [27,41].

The high diversity of targets of particular kinases and the
number of possible phosphorylated proteins accompa-
nied with the pleiotropicity of kinases appear to contra-
dict a specific regulatory role of phosphorylation.
However, the specificity for the actual target site may
not be the only source of kinase specificity and
sensitivity of the regulatory system. In fact, it was
shown that subcellular compartmentation accompanied
with recognition of secondary target sites relatively
distant to the catalytic domains is crucial for further
selectivity and specificity. While 3D motifs near the
actual target site for phosphorylation have been at the
center of our investigations, for the kinase family CDK,
in particular the kinase CDK2 [42], it has been reported
that secondary sites, protein surface site distant from the
actual phosphorylation site may determine binding
specificity of kinases with their target protein. Therefore,
the systematic identification and characterization of such
secondary recognition sites appears worthwhile [43].
Kinase activation in kinase cascades by post translational
modification, formation of protein complexes as well as
priming of phosphorylation further enhance the sensi-
tivity of the phosphorylation system [15].

Conclusion
The reliable prediction of phosphorylation sites and the
identification of associated kinase enzymes are important
steps that will ultimately lead to a deeper understanding of
complex signaling events in cellular systems. Applying a
simple radial distance model for the characterization of the
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3D-structural context of phosphorylation sites, it is possible
to extract kinase specific signature 3D-profiles. While local
one-dimensional amino acid sequence information was
observed to harbormost of the discriminatory power, spatial
context information was identified as relevant for the
recognition of kinases and their cognate target sites and
can be used for an improved prediction of phosphorylation
sites. A web-based service (Phos3D) implementing the
developed structure-based P-site prediction method has
beenmade available at http://phos3d.mpimp-golm.mpg.de.

Methods
Creation of phosphorylation site dataset (phos-Set)
The dataset of phosphorylation sites was obtained from
the Phospho.ELM database [11]. The amino acid residue
annotated as phosphorylated (Ser/Thr/Tyr) was placed in
the middle position of the 13-mer peptide with six
amino acid residues on either side flanking the central
position extracted from the native sequence of the
respective protein harboring the site. Incomplete (i.e.
truncated) motifs were discarded. The data set comprised
14,630 non-redundant sequence motifs (10,769 serine,
2,095 threonine, and 1,765 tyrosine motifs). To identify
associated protein structures and the actual conforma-
tions and locations of the motifs within their three-
dimensional context, we screened the Protein Data Base
(PDB) for protein structures containing the 13-mer
peptide sequence associated with phosphorylation sites
based on exact sequence matches. We found 1,234
motifs (Ser: 633, Thr: 241 and Tyr: 360), which
corresponded to 14,192 exact matches (Ser: 6,757, Thr:
2,757, and Tyr: 4,865 matches) in 6,596 different PDB-
protein chains (Ser: 4,337, Thr: 2,086, Tyr: 2,765 chains);
i.e., many motifs were found multiple times in different
PDB-protein structures. The identified protein structures
corresponded to 704 unique phospho-proteins (Ser:
430, Thr: 227, Tyr: 202) as judged by their corresponding
SWISS-PROT [44] identifier. The dataset consisted of
highly non-redundant protein sequences as evidenced by
the low levels of sequence identities (Additional file 1).
Considering only structures with complete atomic
coordinates of amino acids in their non-phosphorylated
state for the phosphorylation motif and choosing the
structure with the best crystallographic resolution in case
of identical sequence motif hits, we obtained a final set
of 750 non-redundant, structurally resolved phosphor-
ylation motifs (Ser: 363, Thr: 134, Tyr: 253 structural
motifs). For a subset comprising 307 motifs (Ser: 164,
Thr: 59, Tyr: 84 motifs), information of their respective
phosphorylating kinases was available, and the asso-
ciated motifs were classified into respective kinase
families. All motifs as well as the associated PDB entries
and annotated kinase family annotations are provided in
Additional file 2.

Creation of a non-phosphorylation site datasets
(non-phos-Sets)
We removed the phos-Set motifs from the sequences of
the respective protein chains with known protein
structure. From the remaining sequence fragments, we
extracted all non-overlapping Ser/Thr/Tyr site motifs.
The resulting sets of sites served as the true-negative set.
While our approach cannot guaranty that these extracted
sites are truly unphosphorylated, we expect this dataset
to be at least depleted in true phosphorylation sites.

When kinase-family-specific phosphorylation events are
analyzed, the true-positive counts are heavily outnum-
bered by true-negative sites posing the risk of dominating
influences of the negative set rather than the positive set.
In particular, the false-negatives; i.e., sites that we grouped
as unphosphorylated that may, however, become phos-
phorylated under different conditions may then obscure
any discernible signal. To alleviate this problem, while at
the same time keeping a sufficient number of examples
for training purposes, we reduced the negative set for
kinase specific predictions by randomly eliminating sites
from the non-phos-Set until the negative sets were no
more than twice as large as the positive sets.

Construction of the phylogenetic tree of serine-kinases
Sequence motifs associated with putatively phosphory-
lated serines are partly annotated with their respective
phosphorylating kinase and can be grouped into kinase
families and groups according to the classification
scheme proposed by Hanks and Hunter augment by
the AURORA and ATM kinase group [45]. Considering
only kinase groups with known targets, a phylogenetic
tree (dendrogram) was built from representative
sequences using the CLUSTALW package [46]. For each
group, we calculated sequence logos from all respective
targets, i.e. also targets which are not represented in the
protein database PDB [28]. A more in-depth analysis of
the phylogeny of human kinases is provided in [30].

General structural properties of phosphorylated and
unphosphorylated sites
Secondary structural assignments, relative side chain
accessibilities, crystallographic B-Factors were obtained
from the PDBFINDER II database [47-50].

Calculation of spatial amino acid propensity profiles,
Radial Cumulative Propensity (RCP) plots
Propensity ratios (odds-ratios) defined by the normal-
ized counts of a particular amino acid type around sites
in the phos-Set relative to their counts observed around
sites in the non-phos-Set representative set within radial
distances ranging from 2 to 10 Å from the central Ser/
Thr/Tyr were calculated according to Equation 1. The
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chosen distance range covers both direct contacts as well
as through-space interactions such as electrostatic inter-
actions. Beyond 10 Å, we did not find any significant
enrichment or depletion signals. We used two different
distance measures. Amino acid residues were considered
to lie within a given radial cutoff distance if i) the
distance between the putatively activated oxygen
(b-hydrogen) in case of a central serine and threonine,
or g-carbon in case of tyrosine and any atom of that
residue was shorter than the given cutoff distance, or, if
ii) the distance between the interaction centers of
residues as proposed by Park et al. [51] fell within a
given radial distance cutoff. The proposed interaction
centers were shown to better represent interactions
between amino acid residues associated with secondary
structural elements within proteins. Furthermore, both
distance measures represent a different degree of resolu-
tion of atomic detail. Radial distance-dependent pro-
pensity ratios for all 20 amino acid types are illustrated
graphically in radial cumulative propensity plots (RCP-
plot). These plots reflect the cumulative spatial amino
acid residue propensity profile around phosphorylation
sites. We differentiate between radial profiles associated
with i) sequence-local amino acids, i.e. amino acid
residues located within 6 residues from the central serine
in the protein sequence, and ii) non-local amino acid
residues; i.e., residues that are outside the local sequence
environment (> 6 residue positions), and, iii), the
general spatial profile irrespective of the amino acid
position in the protein sequence. The 20 radial sectors
associated with the different amino acid types are
divided into two sub-sectors according to the two
different distance measures used. The significance of
the obtained propensities for increased or decreased
occurrences relative to random expectation around
phosphorylated sites was assessed by estimating the
standard error of the odds-ratios, SE, as proposed by
Levitt (Equation 1) [52]. Odds-ratios signifying over- or
underrepresentation were considered statistically signifi-
cant if odds-ratio > 2 and (odds-ratio - SE) > 1 with odds-
ratios inverted in cases where the propensity ratio was
below 1; i.e., observed less than expected by chance.
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Calculation of amino acid propensity ratios for the
estimation of average depletion or enrichment given a
particular motif set. #AAk/s is the count for amino acids,
where k designates a particular amino acid residue type and s
is the count summed over all amino acid residue types; r is
the considered radial distance to the central serine/
threonine/tyrosine, f is the relative frequency of amino
acid in a particular set, and g the relative frequency of the
amino acid k in the reference non-phos set. Associated
standard errors SE were estimated according to [52].

Prediction approach, evaluation of prediction
performance
To predict phosphorylation sites from sequence and to
evaluate the effect of using structural information on
prediction performance, we applied Support Vector
Machines (SVM), first using sequence information
alone and, subsequently, enriched by the spatial
information. We used the "kernlab" R-package devel-
oped by Alexandros and co-workers [53] applying the
default Radial Basis kernel with automated sigma
estimation. We evaluated the Area Under the Receiver
Operator Characteristic (ROC)-curve (AUC) from a
10-fold cross-validation to quantify the performance of
predictors and to compare the obtained results to
prediction results obtained by using NetPhos and
DisPhos [9,10,16]. Associated standard errors were
computed as in [54].

The 10-fold cross-validation was based on training of the
predictor on 9 out of 10 parts of the randomly ordered
data set and subsequent classification of the remaining
part. The test is repeated for all 10 possible partitions of
the dataset. The classification results are then used for
measuring the performance of the predictor. The devel-
oped classifiers based on Support Vector Machines
included general, kinase-family unspecific serine, threo-
nine, and tyrosine predictors; i.e., the parameters were
trained across all proteins irrespective of annotated
kinase family, as well as predictors specific for the
serine-centric PKA, PKB, MAPK, and CKII kinase family
as well as tyrosine-centric SRC kinase family, for which at
least 10 annotated targets or more were contained in the
dataset. The minimal number of targets allowed a
10-fold cross-validation with the lowest actual number
being 12 kinase-annotated targets (MAPK). For threo-
nine target sites, the respective kinase-family annotation
information yielded only data sets of insufficient size for
statistical analyses. The area under the ROC-curve (AUC)
from 10-fold cross-validation was compared among
different prediction approaches and programs to judge,
whether the addition of spatial information can improve
the prediction performance. Perfect prediction results
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would yield an AUC of 1, while guessing the outcome
would, on average, yield AUCs of 0.5.

Feature-vectors (FV) for the implemented Support
Vector Machines
The feature-vector (FV) used for the Support Vector
Machines consisted of chemical-physical amino acid
properties for the sequence-information-only approach
and an additional spatial information component for
the spatial prediction approach. For the amino acid
property components of the FV, we utilized values from
the collection of 530 commonly used indices provided
by the AAindex database [55] including hydrophobicity,
solvent accessibility preferences, secondary and tertiary
structure preferences, polarity, volume and solvent
accessibility, structural disorder indices and others. The
vector consisted of 530 × 12 dimensions for every index
and position around the central serine, threonine, or
tyrosine, where the components were values from the
respective index and 530 dimensions for the average
index value of the particular sequence motif. The latter
dimensions were introduced to cover the general proper-
ties of the motifs, e.g. negative charge or high flexibility.
To reduce the dimensionality of the Feature-vectors (FV)
as well as to eliminate correlations between components,
principle component analysis (PCA) was performed on
the DFV × N data matrix, where DFV is the number of
components of the Feature Vector, and N is the number
of example peptide sequences in the training set, and the
components of the FV were replaced by the resulting
principle components with non-zero Eigenvalues
explaining the entire variance in the dataset. Note: as
there are fewer examples (N peptide sequences in the
training set) than dimensions, the dimensionality
(Eigenvectors with non-zero Eigenvalues) can be at
most N-1. The PCA was performed independently for
the serine, threonine, and tyrosine motifs. The total
variance contained all independent datasets was essen-
tially completely covered by 228 principal components.
This low number of PCs (compared to 530 properties)
results from the high correlation of amino acid indices.
Although computed by different approaches, various
indices designed to capture different properties also show
similar tendencies, e.g. hydrophobicity and polarity. More-
over, apparently different properties of amino acids, like
hydrophobicity and solvent accessibility are based on
similar attributes of amino acids and, therefore, also
correlate. In addition, the preference for a particular
secondary structure and structural flexibility correlate to a
high degree. In this case, however, the correlation is negative
and the respective loadings on the PC have different signs.
By evaluation of the loading matrix from the PCAs, we
observed that the PCs are mostly influenced by the
hydrophobicity and flexibility values, which appear most

often in combination. The PCs differed with regard to the
particular position of the property, rather than to the
loadings of different indexes. For serine sites, PC1 was most
influenced by the sum of the hydrophobicity and flexibility
values over the entire sequence motif, PC2 by these
properties at positions -6/+2, and PC3 at positions +1/+4
and PC5 -3/+3. PC4 included the variance of amino acid
propensities to rigid structures at position -1 and the sum of
these propensity values. The PCs of the PCA of threonine
sites were based on the variance of the sums of the
hydrophobicity and accessibility index values for PC1 and
sum of the amino acid propensities to rigid secondary
structures for PC2. Variances of hydrophobicity and
flexibility at position +4 were loaded in PC3, +5 in PC4
and +6 in PC4. For tyrosine sites we found the sum of the
hydrophobicity and flexibility indices in PC1, at position +3
in PC2, the sum and position +1 of preferences to rigid
secondary structures in PC3, -1/+1 hydrophobicity in PC4
andhydrophobicity, accessibility, andpolarity at position -6
in PC5. For a comprehensive analysis, we provide the
complete data matrix of variable (amino acid index)
loadings as part of the newly developed Phos3D prediction
server http://phos3d.mpimp-golm.mpg.de.

The spatial information component consisted of the
normalized distribution ratios according to (Eq. 2). The
ratios of amino acid residues within the local sequence,
outside the local sequence, and irrespective of the
position in the protein sequence were used for distances
in a range of 2 to 10 Å between the putatively activated
oxygen (b-hydrogen) in case of a central serine and
threonine, or g-carbon in case of tyrosine and the closest
atom of all other amino acid residues, or between the
interaction centers proposed by Park and coworkers [51].
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Radial distance odds-ratios for particular amino acid
residue types as explained in Eq. 1 with an additional
rescaling rendering resulting values suitable for use in
kernlab package by ensuring that values lie between zero
and one and with 0.5 indicating a balanced count
(neither over-, nor under-representation) designated as
oddsSVM.

Comparison to NetPhos, DisPhos-1.3 and KinasePhos2.0
We compared the AUC from the 10-fold cross-validation
results obtained by using NetPhos, NetPhosK, DisPhos,
KinasePhos2.0. NetPhos and NetPhosK are both part of
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the NetPhos-3-1b package. While NetPhos was designed
to generally predict serine, threonine, and tyrosine
phosphorylation events, NetPhosK includes kinase-spe-
cific predictors. DisPhos is based on SVM, utilizing the
binary representation of the motif sequence, the relative
frequencies of amino acids in that sequence as well as
outputs from predictors for structural disorder and
secondary structure[10]. Furthermore, the Feature Vec-
tors are supplemented by amino acid properties covering
the sequence complexity, net-charge and aromatic
content, hydrophobic moment, and hydrophobicity as
well as values according to a flexibility and surface
exposure scale. Thus, the features used by DisPhos are
comparable to features applied in our predictors. While
NetPhos and DisPhos are predictors for phosphorylation
events, KinasePhos2.0 was developed to identify the
respective kinase [56], comprising over 50 kinase-specific
predictions. The server is reported to yield highly
accurate results also for the general prediction of
phosphorylation events and, therefore, a good bench-
mark for the kinase specific predictors developed here.

For comparison with DisPhos, we submitted 60
randomly selected protein sequences covering at least
50 positive and 100 negative motifs for serine, threo-
nine, and tyrosine sites to the DisPhos 1.3 server [57].
Although 60 protein sequences are only a small subset of
the total of 869 protein structures, the sequences cover
14% serine, 37% threonine and 20% tyrosine sites. Sites
being reported as predicted by similarity to the training
sequences, as assigned by DisPhos were removed to
avoid self-recognition. A similar procedure was applied
to KinasePhos 2.0, however the KinasePhos2.0 server as
well as NetPhos do not provide information of possible
self-recognition events. We submitted the above men-
tioned protein sequences to the KinasePhos 2.0 server
[58] setting the specificity value to "default". The
comparison proved difficult as only positively predicted
(phosphorylated) sites, i.e. sites which were predicted by
a decision value above 0.5 were returned. This rendered
the computation of the AUC for specific predictors
impossible, as not for all submitted sites, a decision
value (score) was available. However, as essentially all
sites from the training and test set, irrespective of
whether they were positive or negative were predicted
to be phosphorylated by the server by at least one kinase,
assessment of the performance of the prediction by
evaluation of the AUC for kinase unspecific prediction
was still possible. Out of 1,335 submitted serines, 1,288
(97%) were predicted as being phosphorylated. The
corresponding ratios for threonines were 1,098 out of
1,124 (98%), and tyrosines 713 out of 723 (98%).
Before evaluating the ROC curve, for each site, the
highest reported decision values were determined. For a
meaningful comparison, the size of the results from

DisPhos and NetPhos were adjusted to reflect a ratio of
1:2 between the positive and negative set. This was
performed by random removal of results from the
positive or negative set, respectively. Subsequently, the
AUCs were computed and compared. The obtained
ROCs are provided in Additional file 1.

Comparison to NetPhos, DisPhos 1.3 and KinasePhos 2.0
judged by accuracy, sensitivity, and specificity
As an alternative measure of performance, we also
computed the accuracy defined as the proportion of
correct predictions (true positive or true negative
predictions) among the predictions made as well as the
respective sensitivity, defined as the proportion of
correctly classified positive sites and specificity, defined
as the proportion of (Eq. 3):

Accuracy
tp tn

tp tn fp fn
Sensitivity

tp
tp fn

Specificity= +
+ + +

=
+

=; ;
ttn

tn fp+
,

(3)

where tp are true positive, tn-true negative, fp-false
positive, and fn-false negative predictions.

The accuracy measure also allowed our prediction
approach to be compared directly to other available
prediction programs, especially KinasePhos 2.0. For
computing accuracies, a decision threshold for the
assignment of a site to a particular group must be set.
The positive assignment threshold for our predictors was
set to zero. Negative decision values were judged as
predicted to be non-phosphorylated and positive deci-
sion values to be phosphorylated. For the other
predictors, this value was set to 0.5 as they reflect
probabilities. For kinase-specific predictions, sequences
from training set were submitted to the KinasePho2.0
server. For assessing the performance associated with a
particular kinase family, only the results corresponding
to the particular family were evaluated as relevant
predictions. As the prediction reports usually estimates
the accuracies based on equal sizes of the positive and
negative set, the negative sets were adjusted by random
removal of the respective prediction results to reflect this
ratio. This adjustment was performed 1,000 times with
different random removals and the mean accuracy as
well as the standard deviation was determined.

Availability and requirements
The protein structure-based phosphorylation site predic-
tion method developed as part of this study has been
implemented as a freely accessible web-based service,
Phos3D, and is available at http://phos3d.mpimp-golm.
mpg.de.
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